Developmental validation of the Huaxia


Developmental validation of the Huaxia Platinum PCR amplification kit: A 6-dye multiplex direct amplification assay designed for Chinese reference samples.

 The Huaxia™ Platinum Kit for short tandem repeat (STR) amplification was designed to meet the needs of the rapidly growing Chinese forensic database. This PCR multiplex allows simultaneous amplification of the following autosomal loci: D3S1358, vWA, D16S539, CSF1PO, TPOX, D8S1179, D21S11, D18S51, Penta E, D2S441, D19S433, TH01, FGA, D22S1045, D5S818, D13S317, D7S820, D6S1043, D10S1248, D1S1656, D12S391, D2S1338, Penta D and the gender-identification markers Yindel, and AMEL.

The Huaxia™ Platinum Kit enables direct amplification from blood and buccal samples stored on treated and untreated paper, and features an optimized PCR protocol that yields time to results in less than 45 min. Developmental validation testing followed SWGDAM guidelines and demonstrated that this assay produces reproducible and accurate results. Studies on 798 individuals in 4 major Chinese ethnic groups produced highly concordant results with other commercially available STR genotyping kits.


Evaluation of the multiplex real-time PCR assays RealStar malaria S&T PCR kit 1.0 and FTD malaria differentiation for the differentiation of Plasmodium species in clinical samples.

 Two commercial PCR assays were assessed in a retrospective study to determine their reliability as tools for the differentiation of Plasmodium species in human blood.A total of 1022 blood samples from 817 patients with suspected or confirmed malaria submitted to the German National Reference Centre for Tropical Pathogens were subjected to malaria microscopy using thick and thin blood films as well as to a genus-specific malaria real-time PCR.

Parasite-positive samples were analysed by RealStar Malaria S&T PCR Kit 1.0 (altona Diagnostics) and FTD Malaria Differentiation (Fast Track Diagnostics) multiplex real-time PCR assays targeting species-specific Plasmodium DNA.Out of the 1022 blood samples, 247 (24.2%) tested positive for Plasmodium spp.

The two multiplex assays showed rather similar performance characteristics and provided concordant species information in 98.9% of samples positive by malaria microscopy and in 95.1% (RealStar) and 96.8% (FTD) of samples positive by genus-specific PCR. Compared to FTD, RealStar revealed slightly reduced sensitivity for submicroscopic, low-level P. falciparum infections, while FTD was unable to detect P. knowlesi.The two commercial malaria PCR assays assessed are suitable for discriminating Plasmodium species in clinical samples, and can provide additional information in cases of microscopically uncertain findings.

Performance and impact of GeneXpert MTB/RIF and Loopamp MTBC Detection Kit assays on tuberculosis case detection in Madagascar. 

Tuberculosis rapid molecular assays, including GeneXpert MTB/RIF® and Loopamp MTBC Detection Kit®, are highly sensitive and specific. Such performance does not automatically translate in improved disease control and highly depends on their use, local epidemiology and the diagnostic algorithms they’re implemented within. We evaluate the performance of both assays and assess their impact on additional cases notification when implemented within WHO recommended tuberculosis diagnostic algorithms in Madagascar.Five hundred forty eight presumptive pulmonary tuberculosis patients were prospectively recruited between November 2013 and December 2014 in Antananarivo, Madagascar, a high TB incidence sub-Saharan African urban setting. Both molecular assays were evaluated as first line or add-on testing following negative smear microscopy.

Based on locally defined assay performance characteristics we measure the impact of both assays and WHO-recommended diagnostic algorithms on additional tuberculosis case notifications.High sensitivity and specificity was confirmed for both GeneXpert MTB/RIF® (86.6% (95% CI 81.1-90.7%) and 97.4% (95% CI 94.9-98.8%)) and Loopamp MTBC Detection Kit® (84.6% (95% CI 78.9-89.0%) and 98.4% (95% CI 96.2-99.4%)). Implementation of GeneXpert MTB/RIF® and Loopamp MTBC Detection Kit® increased tuberculosis diagnostic algorithms sensitivity from 73.6% (95% CI 67.1-79.3%) up to 88.1% (95% CI 82.8-91.9%). This increase was highest when molecular assays were used as add-on testing following negative smear microscopy.

As add-on testing, GeneXpert MTB/RIF® and Loopamp MTBC Detection Kit® respectively improved case detection by 23.8 and 21.2% (p < 0.05).Including GeneXpert MTB/RIF® or Loopamp MTBC Detection Kit® molecular assays for TB detection on sputum samples from presumptive TB cases can significantly increase case notification in TB diagnostic centers. The TB case detection rate is further increased when those tests are use as second-line follow-on testing following negative smear microscopy results. A country wide scale-up and digital integration of molecular-based TB diagnosis assays shows promises for TB control in Madagascar.

Performance evaluation of an Indoxyl Sulfate Assay Kit “NIPRO”.


Background The relationship between renal disease and cardiovascular disease (CVD) is currently known as cardiorenal syndrome. Indoxyl sulfate (IS) is one of the uremic toxins that accelerates the progression of cardiorenal syndrome. This report presents a new method for measuring IS in a simpler way. Methods We evaluated the analytical performance of an IS Assay Kit “NIPRO” loaded on LABOSPECT 008. The evaluated analytical performances included accuracy, precision, dilution linearity, limit of detection (LOD), limit of quantitation (LOQ), recovery test, interference test and comparison against assays performed by high-performance liquid chromatography (HPLC).

Results Total precision showed a <5.3% coefficient of variation at IS concentrations of 3.57-277.73 μmol/L, and satisfactory results were observed in the dilution linearity, LOD, LOQ, recovery and interference tests. The IS Assay Kit “NIPRO” showed a high correlation with the HPLC conventional method (r = 0.993). Conclusions The IS Assay Kit “NIPRO” demonstrated satisfactory analytical performance, and this suggests it could shortly become another common method to measure circulating IS.

Phosphate Assay Kit in One Cell for Electrochemical Detection of Intracellular Phosphate Ions at Single Cells.

In this paper, phosphate assay kit in one cell is realized for the electrochemical detection of intracellular phosphate ions at single cells. The components of the phosphate assay kit, including maltose phosphorylase, maltose, mutarotase, and glucose oxidase, are electrochemically injected into a living cell through a nanometer-sized capillary with the ring electrode at the tip. These components react with phosphate ions inside the cell to generate hydrogen peroxide that is electrochemically oxidized at the ring electrode for the qualification of intracellular phosphate ions.

An average 1.7 nA charge was collected from eight individual cells, suggesting an intracellular phosphate concentration of 2.1 mM. The establishment in the electrochemical measurement of phosphate ions provides a special strategy to monitor the fluctuation of intracellular phosphate at single cells, which is significant for the future investigation of phosphate signal transduction pathway.

Leave a Reply

Your email address will not be published. Required fields are marked *